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Abstract:

This paper presents the application of the decomposition method to solve fractional heat
equations with lateral heat loss, subject to initial and boundary value conditions. Fractional
heat equations, characterized by derivatives of non-integer order o, provide a powerful
framework for modeling heat conduction with memory and hereditary effects. The inclusion of
lateral heat loss adds complexity in the problem, making analytical solutions challenging. The
Adomian Decomposition Method (ADM) is employed to construct the solution as an infinite
series of rapidly converging terms.
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Introduction:

Fractional Calculus (FC) is trending subject in researchers and scholars. It is the powerful
subject by which real life problem can be modeled with precision. The fractional calculus is
also develop at same time when the classical calculus developed, Fractional calculus is
approximately three centuries old mathematical discipline. After the publication of the studies
on Differential Calculus, where Leibnitz introduced the notation%; he received a letter from
Bernoulli putting him a question about the meaning of a non-integer derivative order. Also he
received a similar enquiry from L’Hopital: What if n= %? Leibnitz’s replay was prophetic: It
will lead to a paradox, a paradox from which one day useful consequences will be drawn,
because there are no useless paradoxes.[1-6] . After Leibniz many mathematician studied FC.
It was Euler (1738) [3] who noticed the problem for a derivative of non-integer order. An
integral representation for arbitrary order to define the derivative was suggested by Joseph
Fourier (1822) [3, 5], and his version can be considered the first definition for the derivative of
arbitrary (positive) order. Later on an integral equation associated with the tautochrone
problem was solved by N.H.Abel (1826) [3, 5], which is the first application of FC. A
definition based on the formula for differentiating the exponential function was suggested by
Liouville (1832) [3, 5]. This expression is known as the first Liouville definition. Next
definition formulated by Liouville is presented in terms of an integral and is now called the
version by Liouville for the integration of non-integer order then the most important paper was
published by Riemann [7]. We also note that both Liouville and Riemann formulations carry
with them the so-called complementary function, a problem to be solved. Gr'unwald [8] and
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Letnikov [9], independently, developed an approach to non-integer order derivatives in terms
of a convenient convergent series, conversely to the Riemann-Liouville approach, that is given
by an integral. Letnikov showed that his definition coincides with the versions formulated by
Liouville, for particular values of the order, and by Riemann, under a convenient interpretation
of the so-called non-integer order difference. Hadamard (1892) [5] published a paper where the
non-integer order derivative of an analytical function must be done in terms of its Taylor
series.

Basic definitions of Fractional Calculus:

In literature there are many definitions of fractional derivatives [11-16] but the most frequently
used are as given below

Definition:

Caputo fractional derivative with order a for a function f(t) is defined as

CDatO(f(v)_F(m—a) ftl;)(t — T)m—a—l fm(,d dr

where 0 <m-1<a<m,m € Z+, and t = t0 is the initial time and 77(.) is the Gamma function.

Definition :
Riemann-Liouville fractional integral of order a > 0 for a function x : (0, 0)—R is defined as

0 (1) = 57 [io(t = 9°74 fio) d

Where t = to is the initial time and 77(.) is the Gamma function.
Definition :
Riemann-Liouville fractional derivative with order o for a function f(x): (0, o) —R is defined

as
RLDe(f(2))= r(m o T fto(t— m 1 f(gdr
Where 0 <m -1 <a <m, m € Z+, and t = t0 is the initial time and / (.) is the Gamma
function.
Definition :

The Mittag-Leffler function is defined as

w _ Zk
Eoc(Z) = Zk=0 m

Where a > 0, z € C. The two-parameter Mittag-Leffler function is defined as

o zk
Eap(Z) = Zk:om ,oup>0,zeC

There are some properties between fractional-order derivatives and fractional order integrals,
which are expressed as follows.
Properties:
Leta>0,n=[a]+] and fno (t) = (I " 2 )(t)
Then fractional integrals and fractional derivatives have the following properties.
(1) If f(t) eL'(a; b) and fn-o (t) € AC"[a; b], then
(15D (0 = (0 - £y oD (g
holds almost everywhere in [a; b].
(2) If f(te AC"[a; b], or f(t) € C"[a; b], then
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(14D D) = 10 - Bpzp Lo (1)t

Adomian Decomposition Method:

The Adomian decomposition method was introduced and developed by George Adomian in
[16-17]. Which is helpful in solving linear and nonlinear differential equations, Huge research
work has been done recently in applying this method to a wide class of linear and nonlinear
ordinary differential equations, partial differential equations and integral equations as well.
The formal steps of the decomposition method to solve the one dimensional heat equation is as
follows.
Without loss of generality, we study the initial-boundary value problem

PDE u:= thor-u, 0 <x<m.,t>0,

BC u(0,/)=0,1r>0,

u(L,t)y=0,t>0,

IC u(x,0)=f(x),0<x<m, (A)
to achieve our goal.
To begin our analysis, we first rewrite (A) in an operator form by
Li u(x.,t) = Ly u(x.t),
where the differential operators L, and L, are defined by

Li=0/0t, Ly =0%/0x" .

(B)

It is obvious that the integral operators L™'; and L™, exist and may be regarded as
one and two-fold definite integrals respectively defined by
_ t _
L) =[Ot L7 () = [ (Ddxdx
(€)
This means that
L7 Ly u(x.f) = u(x.f)—u(x,0).

D)

Applying L™}, to both sides of (B) and using the initial condition we find
ux.t) = f FL™ (Ly u(x.1).

(E)

The decomposition method defines the unknown function u(x.f) into a sum of components
defined by the series

u(x.r) = Y=o Un(X.1),
(F)

One Dimensional Heat Flow:
where the components uo(x.t),u1(x,f),ux(x,t), - - - are to be determined. Substituting (F) into

both sides of (E) yields

Z1o‘lo=0 un(X,t) :f(X)+L_l[ (LX(Z‘IO‘lo:O un(X’t) ) = Z?;J:O uﬂ(X’t))>
(&)
or equivalently

uoturtunt- - - = ()L (L(uotutunt- - -) - (uotui+unt - )

(H)
The decomposition method suggests that the zero'™ component uo(x.¢) is identified by the terms
arising from the initial/boundary conditions and from source terms.

h
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The remaining components of u(x,t) are determined in a recursive manner such that each
component is determined by using the previous component. Accordingly, we set the recurrence

scheme
uo(x.1) =f (x),
w1 (68) = LY (Ly (ui(x,0)) = ui(x.t)) . k> 0, D
for the complete determination of the components un(x.f),n _ 0. In view of (G), the components
uo(x.t),u1(x,t),ux(x,t), - - - are determined individually by

uo(x.1) = 1 (x),

u(x.0) = L' (Le(uo) - uo ),

w(x.0) = L' (Lu(ur) - 1)

w3(x.t) = LY (L(w2) - u2),
J)
Other components can be determined in a like manner as far as we like. The accuracy level can
be effectively improved by increasing the number of components determined. Having
determine -d the components uo,u1, - - -, the solution u(x,f) of the PDE is thus obtained in a
series form given by

u(x,t) = Ym—p Un,

Obtained by substituting (I) into (D).[17,18]

Numerical Examples:
Examplel:
P.D.E D{u (x,t)=u,,(x,t) —u(x,y), 0<x<m, t>0 (A)
B.C. u(o, t) =0, t20,
u(1, t) =0, t20,
I.C. u(x, 0) =sin(1t x) + 2. sin (3 1T x),

Where D denote Caputo derivative of order 0.0 < a < 1.
Applying D7* = J{ on both side of the above equation (A).

]i‘x [Dt('xu] =]£x[uxx_u]
u(x,t) = sin(mr x) + 2. sin (37 x) +/[ Uy, - u ]

Adomian method defines the solution u by an infinite series of components given by

u= Z?f:o Un
Hence,
Y=o Un = sin(mx)+2.sin 3 x) +JF[(Xnzo Un)xx — (Xn=oUn)]
Recursive relation is defined by
uo = sin ( x) + 2. sin (3 7w x)
Yk=oUks1= Ji [(Zp=oUid)xx — (Xnm=o )] . k> 0.
U = sin (T x) + 2. sin (3 7 x)
w =J& [—(m? + Dsin(mx) — 2. (972 + 1) sin (37 X) |
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e

ui = [—(m? + Dsin (mx) — 2. (972 + 1) sin (3 x)]

r(ec+1)
w=J& [{(m*+ 1)?sin (rx) + 2.(97% + 1)*sin (3 x)} I( ::1)]
w={(m®+1)?sin(rx)+ 2.(97° + 1) sin (3 nx)}ﬁ
us= Ji [{= (@® + 1)%sin (rx) — 2. (9n? + 1) sin B wx) }% ]
us= {— (m? + 1)3sin (rx) — 2. (9% + 1)3sin 37 x) } F(3t:;°<+1)

tO(
F(o<+1)+{

—{(@?® 4+ 1)3sin (rx) + 2. (I7* +

u(x,y) =sin (mx) +2.sin 3w x) — [(? + 1)sin (m x) + 2. (972 + 1) sin (3 7 x)]

(? + 1)%sin (mx) + 2.(97% + D? sin 37X} -5
3 . _rr
1) Sln(37TX) }F(3°C+1)

u(x,t) = sin (mx)[1-(7? + 1) r(oil)* (12 + 1)2 r(ztjﬂ) -(m? +1)3 r(;:;l) 4]+
2sin (3 (1 (92 + 1) 7t (912 4+ 1P e (O + D3 s ]
which is very closed to the exact solution
u(x,t)= sin (r x) "™+ D4 2 sin (3 x) e~ O +DE
Example2:
P.D.E D{u (x,t)=u,,(x,t) —3ulx,y)+3,0<x<m, t>0 (B)

B.C. u(0,t)=1, t20,
u(1,t)=1, tz0,
I.C. u(x, 0) =1 + sin x,
Where D denote Caputo derivative of order a.0 < a < 1.
Applying D7% = J{ on both side of the above equation (B).

]i‘x [Dt('xu] =]£x[uxx_3u+3]
u(x,t) =1+ sinx+ J&[ uy-3u + 3]

Adomian method defines the solution u by an infinite series of components given by

U= Y=o Un
Hence,
Yn=oUn = 1+ sinx + /5 [(Xno Un)a — 3 (Xnzo Un) + 3]
Recursive relation is defined by
U= 1+ sinx

YreoUk+1= JE [(Xm=o i) — (Em=o k)] . k>0.

uo=1+ sinx
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u =J¢ [—4sinx |

<

ur=—4sinx
! r(e<+1)

to(
F(oc+1)+ ]

w= JZ[(16sinx)

2% tO(

u= 16sinx

1"(20<+1)+3 r(ec+1)

2% tO(

= X —_ i
u= Ji [—64sinx s rocr T3]

3x tZO( tO(

U= —64siny s =9 TS+ 3 r(o+1)

_ . : t* : £2x t* : 3
u(x,y)=1+ sinx 451nxr(0<+1)+16smx F(2“+1)+3 i) 64 sin x rGarD)
tZO( t°<
r(zoc+1)+3 r(ec+1) 7
=1+ sinx[l—4———+16 ——— —64 —— 4 ...] +
u(x.y sinx [ r(x+1) ro+1) r3o+1)

tO( tZO(

r(ec+1) -9 re+1) °°°

which is very closed to the exact solution

u(x,t) =1 +sin x.e™#

Conclusion:

Adomian Decomposition Method is a powerful tool to illustrate fractional linear and nonlinear
differential equation and partial differential equation which reduces complexity of the problem
with memory and hereditary effects. The method efficiently incorporates the initial and
boundary conditions while addressing the effects of lateral heat loss. Numerical examples
illustrate the accuracy and reliability of the ADM in solving such equations.
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