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Abstract:

In this paper, Application of the decomposition method to solve the fractional two-dimensional
inhomogeneous heat equation in respect of initial and boundary value conditions has been
studied. Fractional derivatives, which extend classical calculus to model memory and
hereditary effects, provide a versatile framework for describing heat transfer in complex
systems. The Adomian Decomposition Method (ADM) is employed to derive an analytical
solution in the form of a convergent series, effectively handling the nonlinearity and
inhomogeneity of the equation. Numerical examples illustrate the accuracy and efficiency of
the ADM in capturing the dynamic behavior of the system under inhomogeneous conditions.
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Introduction:

The theory of Fractional Order Calculus (FOC) is almost three century old discipline, but
researchers could able to use it in the last two decades on account of available of computational
recourses. Fractional calculus was introduced on September 30, 1695. On that day, Leibniz
wrote a letter to L'Hopital, raising the possibility of generalizing the meaning of derivatives
from integer order to non-integer order derivatives. L'Hopital wanted to know the result for the
derivative of order n = 1/2. Leibniz replied that "one day, useful consequences will be drawn"
and in fact, his vision became a reality. Lacroix presented a definition of fractional derivative
based on the usual expression for the n derivative of the power function (Lacroix 1819). In
very short period the fractional calculus became a very attractive subject to mathematicians,
and many different forms of fractional (i.e., non-integer) differential operators were
introduced: the Grunwald-Letnikow, Riemann-Liouville, Hadamard, Caputo, Riesz
(Hilter2000; Kilbas 2006; Podlubny1999; Samko 1993) and the more recent notions of
Cresson (2007), Katugampola (2011), Klimek (2005), Kilbas and Saigo (2004) or variable
order fractional operators introduced by Samko and Ross (1993). Researchers in some fields of
applied science and in engineering including signal processing, controls and many other fields
such as biological science and neuroscience have used some aspects of fractional derivatives
and integrals in their work [1-6]

Preliminaries and Notations:

Fractional Calculus:

In literature there are many definitions of fractional derivatives [7-12] but the most frequently
used are as given below

Caputo fractional derivative with order a:

Caputo fractional derivative with order a for a function x(t) is defined as
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Do) JroE = D™ (D) e
where 0 <m-1<a<m,m € Z+, and t = t0 is the initial time and /7(.) is the Gamma function.
Riemann-Liouville fractional integral of order :
Riemann-Liouville fractional integral of order a > 0 for a function x : R+—R is defined as

0 (1) = 5 [io(t = 9°74 fio) d

Where t = to is the initial time and 77(.) is the Gamma function.
Riemann-Liouville fractional derivative with order o :
Riemann-Liouville fractional derivative With order o for a function x : R* —R is defined as

RLDatO(x(t)) F(m > —n fto(t — )mo- 1y (7 dr

Where 0 <m -1 <a <m, m € Z+, and t = t0 is the initial time and / (.) is the Gamma
function.

Mittag-Leffler function :

The Mittag-Leffler function is defined as

w _ Zk
Eoc(Z) = Zk=0 m

Where o > 0, z € C. The two-parameter Mittag-Leftler function is defined as
k
Eep(Z) = S0 Toarg; - @-B>0.2€C
There are some properties between fractional-order derivatives and fractional order integrals,
which are expressed as follows.
Properties:
Leta>0,n=[a]+] and fno (t) = (I " 2 )(t)
Then fractional integrals and fractional derivatives have the following properties.
(1) If f(t) eL'(a; b) and fn-o (t) € AC"[a; b], then

o o n Dn-— —a(a) o
(1% XD, H(t) = f(t) - X 1w(t-a) 1,

holds almost everywhere in [a; b].
(2) If f(te AC"[a; b], or f(t) € C"[a; b], then

(1%°D% () = 0 - s Lo )t

Adomian Decomposition Method:

The method of decomposition is introduce by Adomian [13] which has been successfully used
in solving a linear and nonlinear, ordinary, and partial differential equations [13-14]. Method
has several distinct advantages. Firstly, approximate analytical solutions in the form of power
series can be derived quickly, easily, and accurately, even for nonlinear equations. Another
feature that distinguishes this method from those based on linearization or perturbation
techniques.

The distribution of heat flow in a two dimensional space is governed by the following initial
boundary value problem [25,26]
PDE u; =k( uxxt uyy) + p(xy), 0 <x<a,0<y<b, t>0,
B.C. u(0,y,t) =u(a,y,t)=0,
u(x,0,t) =u(x, b, t)=0,
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LC u(x,y,0) =fx.y), (A)
where u = u(x,y.r) is the temperature of any point located at the position (x,)) of a rectangular
plate at any time ¢, and k is the thermal diffusivity.
The solution in the 7 space, the x space, or the y space will produce the same series solution.
However, the solution in the 7 space reduces the size of calculations compared with the other
space solutions. For this reason the solution in the # direction will be followed in this chapter.
To begin our analysis, we first rewrite (A) in an operator form by

LiuCx.y.t) = k( Ly u(x.y.0) + Ly u(x,y.0) + p(x.y),
where the differential operators L;, Ly and L, are defined by
Li=0/0t, Ly =0°/0x* , L, =0%/0y>. (B)

It is obvious that the integral operators L™!;, L™!y and L™!; exist and may be regarded as one and
two-fold definite integrals respectively defined by

L ()= [i(de. L7 () = [ (Odadx . L7 () = [127 () dydy (€)
This means that

L7 L u(x,y.0) = u(x,y.0)—u(x,.0). (D)
Applying L™!; to both sides of (B) and using the initial condition we find
u(ey.t) =f @)+ L7 (p(y) + L7 (R(Ls uCe i) + Ly u(x,p.0). (E)
The decomposition method defines the unknown function u(x.f) into a sum of components
defined by the series
u(x:yJ) = Z1o1o=0 un(Xayat)a (F)
Two Dimensional Heat Flow:
Where the components uo(x.1),u1(x,f),u2(x.f), - - - are to be determined. Substituting (F) into
both sides of (E) yields
Yzo un(Xy:t) = £ () + L7 (p(xy)) + L7 (LB tn(x,y5t) + Ly( g tn(X.y.1), G)

or equivalently
uoturtuat - =)L (py)) Tk (L7 (Le(uotuntuat - ) - L7 (Ly (woturtunt - +)) - (H)
The decomposition method suggests that the zero™ component uo(x,y.f) is identified by the
terms arising from the initial/boundary conditions and from source terms.
The remaining components of u(x,y.f) are determined in a recursive manner such that each
component is determined by using the previous component. Accordingly, we set the recurrence
scheme

uo(x,y.0) = (6.) + L7 (p(x.y)),
w1 (x .0 =k LY (Ly (ui(x,p.0)) + L7 (Ly u(x,.0)) , k>0, ()
for the complete determination of the components ux(x,).t),n > 0. In view of (G), the
components uo(x,y,t),u1(x,y.,t),ux(x,y.t), - - - are determined individually by

(e ) = (ey) + L7 (p(x.y)),
i (x,y.0) = L™ (L(uo) - o ),
w(xy.t) =L (L) - ur )
us(x,y.t) = L7 (L(ua) - u2),
)
Other components can be determined in a like manner as far as we like. The accuracy level can
be effectively improved by increasing the number of components determined. Having
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determine -d the components uo,u1, - - -, the solution u(x,y.f) of the PDE is thus obtained in a

series form given by

u(xryat) = Z1o1o=0 Un,
Obtained by substituting (I) into (D)

Numerical Examples:
Example 1:

P.D.E D{u (x,y, t)=2 (uxx(x, y,t) +u,(xy, t)) +2sinx, 0O0<x,y<m,t>0 (5.1)

B.C. u(0,y,t) =u(m,y,t)=0,
u(x,0,t) =u(x, m, t)=sin x,
L.C. wu(x,y,0)=sinxsiny + sinx

Where D denote Caputo derivative of order 0.0 <a < 1.
Applying D;* = J on both side of the above equation (5.1).
J& [Du] = JE[2 (uar + uyy) + 2sinx |

u(x,y,t) =sinxsiny + sinx + J&[2(uy, + u,,) + 2sinx |

J’}’)

Adomian method defines the solution « by an infinite series of components given by

— [ee]
u= Zn:O Un
Hence,

%oty = sinxsiny + sinx + JE[20( £ n)x + (E20Un)yy) + 2sinx]

Recursive relation is defined by
uy(x,y,t) = sinxsiny + sinx

Yoot (603, 8) = JE[20( iz i) xx + (Ziozo Ur)yy) + 2sinx], k = 0.

uy(x,y,t) = sinxsiny + sinx

Uy (x,y,t) = J&[—4sinxsiny |

to(
ul(x,y, t) = —4sinxsiny m
u,(x,y,t) = JZ[16sinxsiny F(::_l) + 2sin x|
uz(x,y,t) = 16sinxsiny m'F 2sinx m
2 o
us(x,y,t) = JF[—64sinxsiny r(ztoc+1)—4sinx Tl + 2sinx]
t3o< t20< x
u3(x,y,t) = —64smxsmy m—élsmx m'F ZSIHXW

Volume VII, Issue VIII (August 2022)

Page 96



@) Cosmos Multidisciplinary Research E-Journal Online Available at WWW.Cmij.in

Recognized International Peer Reviewed Journal Impact Factor 4.94 ISSN No. 2456-1665

. . . . . t~ . . 2™
u(x,y,t) =sinxsiny + sinx — 4sinxsiny o D) + 16sinxsiny m+
26 t 64 si . 3 4si 2% 2 =

sinx reatl) sinxsiny TGeil) Slnx—r(2“+1)+ 51nx—r(o<+1)+---
u(x,y,t) =sinxsiny (1—4 116 AR +0) +
P r(oec+1) ro«+1) r3e+1)
& tzoc
i 1+4 -4 + -
sinx (A ey " frze v )

4t

Exact solution is u(x,y,t) = e *'sinxsiny + sinx

Example 2:
P.D.E D{u (x,y, t)=3(uxx(x, y,t) +u,(xy, t)) +3cosx, O<xy<m,t>0 (52)

B.C. u(0,y,t)=—u(m,y,t)=1,
u(x,0,t) =u(x, m, t)=cos x,
I.C. wu(x,y,0)=sinxsiny + cosx

Where D denote Caputo derivative of order 0.0 <a < 1.
Applying D7 = J{ on both side of the above equation (5.2).

J& [DFu] = JE[3(ts + uyy) + 3 cosx]
u(x,y,t) =sinxsiny + cosx + J[3(uy, + uyy) + 3 cosx |

Adomian method defines the solution u by an infinite series of components given by

j— co
U= Y=o Un
Hence,

S0ty = sinxsiny + cosx + ¥ [3(( ZigUndue + (T n)yy) + 3 cos]
Recursive relation is defined by
uo(x,y,t) =sinxsiny + cosx

Yot (43, 0) = JE[[20(Zizo i) ae + (Ziezo Ui)yy) + 3 cosx]. k = 0.
Uy(x,y,t) = sinxsiny + cosx
Uy (x,y,t) = J¥[—6sinxsiny ]

tOC

uy(x,y,t) = —6sinxsiny m

tO(
r(oec+1)

u,(x,y,t) = JZ[36sinxsiny 3 cosx]

t20< tO(

u,(x,y,t) = 36sinxsiny m+ 3COSXm

Volume VII, Issue VIII (August 2022) Page 97



@A Cosmos Multidisciplinary Research E-Journal Online Available at WWW.Cmij.in

Recognized International Peer Reviewed Journal Impact Factor 4.94 ISSN No. 2456-1665
2 ¢
us(x,y,t) = J&[—216 sinxsiny et 9cosxr(:c+1) + 3 cos x|
t3oc t2c>c toc
us(x,y,t) = —216sinxsiny —————9cosx ————+ 3cosx———
36y, ) "TG« +1) r(2« +1) (= +1)

o 2
u(x,y,t) =sinxsiny + cosx —6sinxsiny —r(oi+1) + 36sinxsiny PTET) +

£~ . . t3o( t20( (4
3cosxr(°c+1)—216smxsmy m—9cosx m+3cosxr(a+l)+---
u(x,y,t) =sinxsiny (1—6 436 e —216t3—0(+---)+

P r(oec+1) ro«+1) r3e+1)
(4 t20c
cosx(I+ 6 =3y~ r vy T )

—6t

Exact solution is u(x,y,t) = e ®*sinxsiny + cosx

Conclusion:

The decomposition method used to solve the fractional two-dimensional inhomogeneous heat
equation with initial and boundary value conditions. The Adomian Decomposition Method
(ADM) is employed to derive an analytical solution in the form of a convergent series. The
method integrates the initial and boundary conditions seamlessly into the solution process,
while avoiding the limitations of discretization or perturbation techniques. The results confirm
the decomposition method's capability as a reliable analytical tool for solving multi-
dimensional fractional heat equations in real-world applications.
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