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Abstract:

This paper explores the application of the decomposition method to solve fractional two-
dimensional heat flow equations with initial and boundary value conditions. Fractional
derivatives, which account for anomalous diffusion and memory effects, provide a robust
mathematical framework for modeling heat transfer processes in two spatial dimensions.
Numerical investigation has been done to study shows the efficacy and utility of ADM. Article
explores the potential of the method for solving complex fractional differential equation
ensuring accuracy and consistency.

Introduction:

In last few decades there is increasing interest in Fractional Calculus which deals with
integration / differentiation of arbitrary orders. Almost all the field of science has applications
of fractional calculus which has been ever growing and includes control theory, viscoelasticity,
diffusion, turbulence, electromagnetism and many other physical processes. An exhaustive
treatment of fractional calculus in this respect can be found in [1,2]. Several techniques such as
Adomian decomposition method (ADM) [3], Homotopy perturbation method (HPM) [4], and a
Variational iterative method have been developed for solving solving fractional differential
equations in particular.

History of fractional calculus is available in [5-10]. Many researcher worked on FC in
sequence After Leibniz, it was Euler (1738) [7] that noticed the problem for a derivative of
non-integer order. Joseph Fourier (1822) suggested an integral representation for arbitrary
order to define the derivative, and his version can be considered the first definition for the
derivative of arbitrary (positive) order. Later on N.H.Abel (1826) solved an integral equation
associated with the tautochrone problem, which is the first application of FC. Liouville (1832)
[11, 13] suggested a definition based on the formula for differentiating the exponential
function. This expression is known as the first Liouville definition. Next definition formulated
by Liouville is presented in terms of an integral and is now called the version by Liouville for
the integration of non-integer order then the most important paper was published by Riemann
[11]. We also note that both Liouville and Riemann formulations carry with them the so-called
complementary function, a problem to be solved. Gr'unwald [12] and Letnikov [13],
independently, developed an approach to non-integer order derivatives in terms of a convenient
convergent series, conversely to the Riemann-Liouville approach, that is given by an integral.
Letnikov showed that his definition coincides with the versions formulated by Liouville, for
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particular values of the order, and by Riemann, under a convenient interpretation of the so-
called non-integer order difference. Hadamard (1892) [9] published a paper where the non-
integer order derivative of an analytical function must be done in terms of its Taylor series.

Basic definitions Fractional Calculus:

To study basics Of definitions of fractional derivatives and theory we refer reader [14-19] but
the most frequently used are as given below

Caputo fractional derivative:

Caputo fractional derivative with order a, where 0 < a <1 for a function f(t) is defined as

*DXo(f(2))= F(m o fto(t — m-o- 1 f(7) dr

where 0 <m-1<a<m, m € Z+, and t = t0 is the initial time and /7(.) is the Gamma function.
Riemann-Liouville fractional integral:

Riemann-Liouville fractional integral of order & > 0, 0 < a < 1for a function f(x) : (0,00)—R is
defined as

0 (1) = 5= [io(t = 9% fio) d

Where t =t is the initial time and /7(.) is the Gamma function.
Riemann-Liouville fractional derivative:
Riemann-Liouville fractional derivative with order a,0 <a <1 for a function f(x) : (0,00) =R

is defined as

RLD (f())= r(m = = ot= 9™ (g de

Where 0 <m-1<a <m, m € Z+, and t = t0 is the initial time and 7" (.) is the Gamma
function.

Mittag-Leffler function:

The Mittag-Leffler function is defined as

w0 _ 2
Ea(Z) = Xk=0 T iearn

Where a > 0, z € C. The two-parameter Mittag-Leffler function is defined as

k
Eap(Z) = X0 oy @B>0.2€C

There are some properties between fractional-order derivatives and fractional order integrals,
which are expressed as follows.
Properties:
Leta>0,n=[a]+] and fno (t) = (I " 2 )(t)
Then fractional integrals and fractional derivatives have the following properties.

(1) If f(t) eL'(a; b) and fn-o (t) € AC"[a; b], then
(18D 1)(0 = (0 - Koy oD (g
holds almost everywhere in [a; b].

(2) If f(te AC"[a; b], or f(t) € C"[a; b], then

(1D D0 = 1) - T3 o ()t
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Adomian Decomposition Method:

The method of decomposition is introduce by Adomian [20] which has been successfully used
in solving a linear and nonlinear, ordinary, and partial differential equations [21-24]. Method
has several distinct advantages. Firstly, approximate analytical solutions in the form of power
series can be derived quickly, easily, and accurately, even for nonlinear equations. Another
feature that distinguishes this method from those based on linearization or perturbation
techniques.

The distribution of heat flow in a two dimensional space is governed by the following initial
boundary value problem [25,26]

PDE u; =k( uxxt uyy), 0 <x<a,0<y<b, t>0,

B.C. u(0,y,t) =u(a,y,t)=0,

u(x,0,t) =u(x, b, t)=0,

LC u(x,y,0) =fx.y), (A)
where u = u(x,y.f) is the temperature of any point located at the position (x,)) of a rectangular
plate at any time ¢, and k is the thermal diffusivity.
The solution in the 7 space, the x space, or the y space will produce the same series solution.
However, the solution in the 7 space reduces the size of calculations compared with the other
space solutions. For this reason the solution in the # direction will be followed in this chapter.
To begin our analysis, we first rewrite (A) in an operator form by

Li u(x,y,t) = k( Ly u(x,p.t) + Ly u(x,y.t),
where the differential operators L, , Ly and L, are defined by
Li=0/0t, Ly =0°/0x* , L, =0%/0y>. (B)
It is obvious that the integral operators L™!;, L™!y and L™!; exist and may be regarded as one and
two-fold definite integrals respectively defined by
()= f,(dt . L ()= [ (Odxdx, L7y ()= 27 ()dydy (©)
This means that

L7 Lou(x,p.0) = u(x, y.0)—u(x,.,0). (D)
Applying L™, to both sides of (B) and using the initial condition we find
uxyt) = £ )L (K(Lx u(x,p.0) + Ly u(x,p.0)). (E)
The decomposition method defines the unknown function u(x.f) into a sum of components
defined by the series
u(x:yJ) = Z1o1o=0 un(Xayat)a (F)
Two Dimensional Heat Flow:
where the components uo(x.t),u1(x,f),ux(x,t), - - - are to be determined. Substituting (F) into
both sides of (E) yields
Z‘?{;O un(X»yat) =f(X)+L_1; (k(Lx(Z;;O un(X»yat) + LJ’( Z‘?{;O un(xayat))a (G)
or equivalently
uoturtunt - = f(x)rk (L7 (L(wotantuat - ) = L7 (Ly (uotunrtuxt - +)) (H)

The decomposition method suggests that the zero™ component uo(x,y.f) is identified by the
terms arising from the initial/boundary conditions and from source terms.

The remaining components of u(x,y.f) are determined in a recursive manner such that each
component is determined by using the previous component. Accordingly, we set the recurrence
scheme
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uo(x.y.t) =f (x.y),
w1 (x,,0) =k LY (Lx (u(x,.0) + LY (Ly u(x,.0) , k>0, (1)
for the complete determination of the components ux(x,).t),n > 0. In view of (G), the
components uo(x, v,1),u1(x,y.,0),u2(x,y.t), - - - are determined individually by

uo(x. 1) =f(x.p),

w(x,p0) = L' (Leuo) - uo),

wxyt) = L' (L) - wr)

w3, p.0) = L7 (L) - ),

@)
Other components can be determined in a like manner as far as we like. The accuracy level can
be effectively improved by increasing the number of components determined. Having
determine -d the components uo,u1, - - -, the solution u(x,y.f) of the PDE is thus obtained in a
series form given by
u(x,y.f) = Z;?:O Un,

Obtained by substituting (I) into (D)

Numerical Examples :

PD.E Dfu(x,y,t)=u(x,yt)+u,(xyt), O<x,y<m, t>0 (A)
B.C. u(0,y,t)=u(my,t)=0,
u(x,0,t) =u(x,m t)=0,
LC. u(x,y,0) =sinxsiny
Where D denote Caputo derivative of order 0.0 < a < 1.
Applying D7* = J{ on both side of the above equation (A).

JE& [DEu] = J [ + uyy ]

u(x,y,t) =sinxsiny + J{ [y, +uy, |

Adomian method defines the solution u by an infinite series of components given by
U= Yn=o Un
Hence,
Yn=oUn = sinxsiny +J7 [(Xrzo Un)m + (Xnzo Undyy]
Recursive relation is defined by
uy(x,y,t) = sinxsiny

Zlio=0 Uk +1 (JC, Y, t) =]£x[( ZZO=0 uk)xx + (ZZ(;O uk)yy]r k = 0.
uy(x,y,t) = sinxsiny
U (x,y,t) = J¥[—2sinxsiny ]

to(

ul(x,y, t) =-=2 sin x siny m

Volume VII, Issue XI (November 2022) Page 17



@) Cosmos Multidisciplinary Research E-Journal Online Available at WWW.Cmij.in

Recognized International Peer Reviewed Journal Impact Factor 5.3 ISSN No. 2456-1665

[o¢

u06,,8) = JE [ sinxsiny ——]
tZOC
u,(x,y,t) = 4sinxsiny m
2
us(6,y,6) = JE[~Bsinxsiny ]
t30(
usz(x,y,t) = —8sinxsiny TGx +1)
. . 1 to( 2 tZO( 3 t30(
u(x,y,t) = sinxsiny {1+ (—=2) e T (-2) e T (-2) F(3O(+1)+~-~)

Exact solution is u(x,y,t) = sinxsinye ™2

P.D.E Dfu (x,y,t)=u,,(x,y,t) + uy,(x,y,t) —u (x,y,t), 0<x,y<m,t>0 (B)
B.C. u(0,y,t) =u(m,y,t)=0,
u(x,0,t) =—u(x,mt) = e 3sinx,
LC. u(x,y0)=sinxcosy
Where D denote Caputo derivative of order 0.0 < a < 1.
Applying D7 * = J on both side of the above equation (B).

]1(:x [Dt('xu] =]£x[uxx +uy, —u]
u(x,y,t) =sinx cosy + J¢ [ty + Uy, —u]

Adomian method defines the solution u by an infinite series of components given by
U= Ym=o Un
Hence,
Yn=oUn = sinxcosy + [ [(Xnzo tn)xx + (Lm0 Undyy = (Znto Un)]
Recursive relation is defined by
uy(x,y,t) = sinxcosy

ZZO=0 Up+1 (x! Y, t) = ]?C[( Zl?:o uk)xx + (Zl?:o uk)yy - (Z;?:O uk)]r k = 0.
uy(x,y,t) = sinxcosy

u (x,y,t) = J{[-3sinxcosy]

tO(
uy(x,y,t) = =3 sinxcosy m
Uy (x,y,t) = J¥[9sinxcosy r(o<+1)]
tZO(
u,(x,y,t) = 9sinxcosy m
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2

us(x,y,t) = J¥[—27 sinxcosy r(20<+1)]
£3
u;(x,y,t) = —27sinxcosy —1_,(3 x +1)

o a1t _ay2 _23
u(x,y,t) = sinxcosy{l1+ (—3) F(oc+1)+( 3) 1"(20<+1)+( 3) r(30<+1)+ ) ...

Exact solution is u(x,y,t) = e 3. sinx cosy

Conclusion:

The Adomian Decomposition Method (ADM) is utilized to construct an analytical solution as a
series of rapidly converging terms. This approach avoids the complexities associated with
numerical methods, such as discretization and linearization, while preserving the intrinsic
properties of the problem. The initial and boundary conditions are seamlessly incorporated into
the iterative solution process, ensuring accuracy and consistency. Numerical examples are
provided to demonstrate the ADM's efficacy in addressing two-dimensional fractional heat
flow problems, highlighting its utility in advanced heat conduction modeling. The results
emphasize the method's potential as a powerful analytical tool for solving complex fractional
differential equations in multi-dimensional contexts.
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